鋰離子電池的誕生可以說是儲(chǔ)能領(lǐng)域的一場(chǎng)革命,鋰離子電池的廣泛應(yīng)用徹底的改變了我們的生活,輕便的手機(jī)、筆記本電腦,長(zhǎng)續(xù)航的電動(dòng)汽車等等,我們的生活已經(jīng)與鋰離子電池緊緊的捆綁在了一起,很難相信如果我們失去了像鋰離子電池這樣便捷、高效的儲(chǔ)能電池后我們的生活會(huì)變成什么樣。隨著鋰離子電池技術(shù)的不斷發(fā)展,我們也對(duì)鋰離子電池的性能提出了更高的要求,我們希望鋰離子電池更小、更輕便、儲(chǔ)能更多,這些訴求也在推動(dòng)著鋰離子電池研究工作不斷前進(jìn)。從電池結(jié)構(gòu)和新材料、新體系的采用,可愛的鋰離子電池研究者們不斷嘗試各種方法提高鋰離子電池能量密度的方法。 1.結(jié)構(gòu)設(shè)計(jì) 提高鋰離子電池的比能量從結(jié)構(gòu)上講,要提高正負(fù)極活性物質(zhì)在鋰離子電池中所占的比例。鋰離子電池主要由正負(fù)極活性物質(zhì)、隔膜、銅箔、鋁箔和殼體及結(jié)構(gòu)件等部分組成,其中真正能夠?yàn)殇囯x子電池提供容量的只有活性物質(zhì),因此提高活性物質(zhì)在鋰離子電池中所占的比重才是最有效的提高鋰離子電池手段。例如最近特斯拉在大力推動(dòng)的21700電池,就是通過使用直徑更大的電芯(21mm),增加電芯的高度(70mm)提高活性物質(zhì)占比,減少結(jié)構(gòu)件等非活性材料的比重,提高鋰離子電池的比能量,降低單位瓦時(shí)成本。此外軟包電池也是減少結(jié)構(gòu)件重量的有效方法,通過使用鋁塑膜代替?zhèn)鹘y(tǒng)的鋼制外殼,可以極大的減少結(jié)構(gòu)件在鋰離子電池中所占的比重。 除了增大鋰離子電池的直徑,另外一個(gè)有效提高鋰離子電池比能量的方法是減少隔膜的厚度,目前常見的PP-PE-PP三層復(fù)合隔膜的厚度一般達(dá)到30um以上,達(dá)到正負(fù)極極片的厚度的20%左右,這也造成了嚴(yán)重的空間浪費(fèi),為了減少隔膜所占的空間,目前廣大鋰離子電池廠家普遍采用帶有涂層的薄隔膜,這些隔膜的厚度可達(dá)到20um以下,可以在保證鋰離子電池安全的前提下,顯著的減少隔膜所占的體積比例,提高活性物質(zhì)占比,提高鋰離子電池比能量。 另外的一種增加活性物質(zhì)比例的方法是從電池的生產(chǎn)工藝的角度入手,首先是增加活性物質(zhì)在電極中占比。一般鋰離子電池的電極主要由四大部分組成,活性物質(zhì)、導(dǎo)電劑、粘結(jié)劑和集流體組成,為了提高活性物質(zhì)比例,就需要降低其他部分的比例,通過采用新型導(dǎo)電劑、粘結(jié)劑從而減少導(dǎo)電劑和粘結(jié)劑的比例,采用更薄的集流體來減少非活性物質(zhì)的所占的比例。其次,需要提高正負(fù)極的涂布量,但是提高電極的涂布量還面臨的一個(gè)問題:當(dāng)電極過厚時(shí)會(huì)造成電極的Li+擴(kuò)散動(dòng)力學(xué)條件變差,影響鋰離子電池的倍率和循環(huán)性能,為了解決這一問題德國卡爾斯魯厄理工學(xué)院的Boris Bitsch等[1]利用毛細(xì)懸濁液和多層電極工藝制備了具有梯度孔隙率的高性能厚電極。在靠近銅箔的低層,Boris Bitsch等采用了普通漿料,使得其具有較低的孔隙率和良好的導(dǎo)電性,而在遠(yuǎn)離銅箔的表層,Boris Bitsch則采用了毛細(xì)懸濁液漿料,并向其中添加了1-辛醇,使其孔隙率明顯增加,改善了電極的動(dòng)力學(xué)條件,從而使得該電極的孔隙率自下而上呈現(xiàn)出逐漸增加的特性,顯著改善了厚電極的動(dòng)力學(xué)條件,提高了厚電極的電化學(xué)性能,從而實(shí)現(xiàn)了在提高電池重量和體積比能量的同時(shí)不降低電池的循環(huán)性能。 提高鋰離子電池比能量的另外一個(gè)重要的方法就是控制電解液的數(shù)量,減少電解液的數(shù)量可以有效的提高鋰離子電池的能量密度。電解液在鋰離子電池內(nèi)部起到一個(gè)媒介的作用,正負(fù)極的Li+通過電解液進(jìn)行擴(kuò)散,因此電解液理論上來講是一種“非消耗品”,只要有少量的電解液保證Li+在正負(fù)極之間自由擴(kuò)散就行了,但是實(shí)際上由于在化成過程中SEI膜的形成導(dǎo)致電解液分解,以及在循環(huán)過程中SEI膜破壞和正極氧化等原因造成的電解液分解,導(dǎo)致電解液在實(shí)際上是持續(xù)消耗的,因此電池內(nèi)的電解液一般而言都是過量的,這也是導(dǎo)致鋰離子電池比能量低的一個(gè)重要原因,為了減少電解液量,同時(shí)保證電池的性能,需要我們對(duì)電解液溶劑體系和電解液添加劑體系進(jìn)行改進(jìn),提高電解液的穩(wěn)定性。為了改善電解液在三元材料NMC電池中的穩(wěn)定性,德國明斯特大學(xué)的Yunxian Qian等[2]向傳統(tǒng)的EC和EMC(重量比為3:7)為溶劑的電解液中添加了少量的FEC添加劑,發(fā)現(xiàn)FEC添加劑能夠有效的減少電解液的分解,提高NMC電池的首次庫倫效率,并顯著改善電池的循環(huán)穩(wěn)定性。 2.正負(fù)極活性物質(zhì)的選擇 隨著我們對(duì)鋰離子電池能量密度的要求不斷提高,傳統(tǒng)的LiCoO2材料已經(jīng)物法滿足高比能鋰離子電池的需求,為了進(jìn)一步提升鋰離子電池的能量密度,我們有兩個(gè)大方向可以選擇:1)提高鋰離子電池的工作電壓;2)提高正負(fù)極材料的容量。首先我們從第1)方面來分析一下提高鋰離子電池能量密度的可行性,鋰離子電池的工作電壓取決于正負(fù)極材料之間的電壓差,目前負(fù)極材料石墨的電壓已經(jīng)很低(約0.1V vs Li+/Li),進(jìn)一步降低的空間并不大,提升鋰離子電池電壓主要從正極材料方面進(jìn)行著手,目前可供選擇的高電壓材料主要有以下幾類:(1)高電壓的尖晶石鎳錳酸鋰LiNi0.5Mn1.5O4材料,其工作電壓可達(dá)5.0V,電壓平臺(tái)在4.7V左右,理論容量為147mAh/g,實(shí)際容量可達(dá)138mAh/g以上。(2)橄欖石類的高電壓材料,例如LiMnPO4和LiCoPO4材料等,其中LiMnPO4材料的電壓平臺(tái)可以達(dá)到4.1V左右,LiCoPO4材料的更是可以達(dá)到4.8V左右。(3)富鋰材料,富鋰材料的理論容量可達(dá)200mAh/g以上,甚至是300mAh/g,但是為了發(fā)揮出富鋰材料高容量的優(yōu)勢(shì),需要將其工作電壓提高,甚至達(dá)到4.8V左右。這些高電壓材料除了要解決自身存在的問題外,還面臨著一個(gè)同樣的問題:高電壓下電解液不穩(wěn)定的問題,目前商用的鋰離子電池電解液一般是基于碳酸酯類的有機(jī)電解液,溶劑鹽為L(zhǎng)iPF6,這也導(dǎo)致在高電勢(shì)下,電解液極易被氧化分解,導(dǎo)致電池的性能嚴(yán)重下降,甚至發(fā)生安全問題。為了克服這一難題,我們可以從兩個(gè)方面進(jìn)行著手,首先是從電解液溶劑體系方面,為了提高電解液的電化學(xué)穩(wěn)定窗口,可以采用更為穩(wěn)定的離子液體電解液和新型的電解質(zhì)鹽。另一方面,為了減少高電壓材料對(duì)電解液的氧化,可以對(duì)高電壓材料進(jìn)行表面的包覆處理,從而隔離電解液與活性物質(zhì)。華南師范的大學(xué)的Dongrui Chen等[3]利用Li3PO4對(duì)富鋰層狀材料進(jìn)行了表面包覆處理,Li3PO4包覆顯著改善了富鋰材料的循環(huán)性能,減少了過渡金屬元素的溶解,抑制了層狀結(jié)構(gòu)向尖晶石結(jié)構(gòu)的轉(zhuǎn)變。 提高鋰離子電池比能量的另外一個(gè)重要的方面就是提高正負(fù)極活性物質(zhì)的比容量,這需要從正極材料和負(fù)極材料共同著手。正極材料方面可供我們選擇的高容量的正極材料主要有以下兩大類:1)三元材料NCM和NCA;2)富鋰材料。三元材料是目前最為成熟的高容量的正極材料,而且隨著Ni含量的提高,三元材料的比容量也會(huì)相應(yīng)的提高,例如高鎳的NCM811材料,比容量可達(dá)200mAh/g左右,高鎳NCA材料比容量也可以達(dá)到190mAh/g左右,要遠(yuǎn)高于LiCoO2材料。富鋰材料是近年來新發(fā)展起來的高容量正極材料,其比容量可以達(dá)到200mAh/g以上,甚至是300mAh/g,但是目前富鋰材料在市場(chǎng)上還較為少見,究其原因主要有以下幾點(diǎn):1.不可逆容量高;2.電壓衰降;3.循環(huán)性能差。改善其性能需要從元素?fù)诫s和表面包覆,以及材料結(jié)構(gòu)設(shè)計(jì)等方面進(jìn)行著手。 高容量的負(fù)極材料方面,我們主要有以下幾個(gè)選項(xiàng):1)硅基材料;2)N摻雜石墨類材料;3)過度金屬S化物類材料;4)金屬鋰負(fù)極。硅負(fù)極材料不需多說,這也是目前市場(chǎng)上最為成熟可靠的高容量負(fù)極材料,晶體Si的比容量可達(dá)4200mAh/g以上,但是膨脹大、循環(huán)性能差,SiOX雖然容量稍低(1500mAh/g左右),但是循環(huán)性能優(yōu)異,缺點(diǎn)是首次效率低。N摻雜石墨材料是近年來高容量負(fù)極材料的一個(gè)研究熱點(diǎn),N原子的電負(fù)性為3.5左右,在石墨中摻入N元素后,可以顯著的提高石墨負(fù)極的比容量,武漢大學(xué)的Kaifu Huo等[4]利用模版法制備了N摻雜介孔碳中空球材料,其在0.1A/g的電流密度下,比容量可達(dá)931mAh/g,0.5A/g的電流密度下,循環(huán)1100此,仍然能夠保持485.7mAh/g的比容量。 金屬硫化物主要指的是MoS2,其可逆容量可達(dá)1290mAh/g,遠(yuǎn)高于石墨材料,但是離子擴(kuò)散速率低、電子電導(dǎo)率低影響其性能發(fā)揮,為了克服之一問題,Jie Shao等[5]以N摻雜石墨材料為基體,在上面生長(zhǎng)MoS2納米片,該材料表現(xiàn)出了良好的電化學(xué)性能,在10A/g的超大電流密度下,比容量仍然可達(dá)915mAh/g。 金屬Li負(fù)極比容量可達(dá)3860mAh/g,電勢(shì)低,導(dǎo)電性好,是一種理想的鋰離子電池負(fù)極材料,早期因?yàn)榘踩詥栴}而被石墨材料所取代,而近年來隨著Li-S電池和Li-O2電池的快速發(fā)展,對(duì)金屬Li負(fù)極的研究逐漸深入,已經(jīng)有多種手段可以抑制鋰枝晶的生長(zhǎng),克服金屬Li充放電過程中的體積膨脹,提高金屬Li負(fù)極的安全性,改善循環(huán)性能,金屬Li負(fù)極在鋰離子電池中應(yīng)用的時(shí)機(jī)已經(jīng)成熟,據(jù)估算將鋰離子電池的負(fù)極替換為金屬鋰,可以將鋰離子電池的能量密度提高到440Wh/kg左右。
|